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Abstract—ChipNeMo aims to explore the applications of large
language models (LLMs) for industrial chip design. Instead of
directly deploying off-the-shelf commercial or open-source LLMs,
we instead adopt the following domain adaptation techniques:
custom tokenizers, domain-adaptive continued pretraining, su-
pervised fine-tuning (SFT) with domain-specific instructions, and
domain-adapted retrieval models. We evaluate these methods on
three selected LLM applications for chip design: an engineering
assistant chatbot, EDA script generation, and bug summarization
and analysis. Our results show that these domain adaptation
techniques enable significant LLM performance improvements
over general-purpose base models across the three evaluated
applications, enabling up to 5x model size reduction with similar
or better performance on a range of design tasks. Our findings
also indicate that there’s still room for improvement between
our current results and ideal outcomes. We believe that further
investigation of domain-adapted LLM approaches will help close
this gap in the future.

I. INTRODUCTION

Over the last few decades, Electronic Design Automation
(EDA) algorithms and tools have provided huge gains in chip
design productivity. Coupled with the exponential increases in
transistor densities provided by Moore’s law, EDA has enabled
the development of feature-rich complex SoC designs with
billions of transistors. More recently, researchers have been
exploring ways to apply AI to EDA algorithms and the chip
design process to further improve chip design productivity [1]
[2] [3]. However, many time-consuming chip design tasks that
involve interfacing with natural languages or programming lan-
guages still have not been automated. The latest advancements
in commercial (ChatGPT, Bard, etc.) and open-source (Vicuna
[4], LLaMA2 [5], etc.) large language models (LLM) provide
an unprecedented opportunity to help automate these language-
related chip design tasks. Indeed, early academic research [6]
[7] [8] has explored applications of LLMs for generating RTL
that can perform simple tasks in small design modules as well
as generating scripts for EDA tools.

We believe that LLMs have the potential to help chip design
productivity by using generative AI to automate many language-
related chip design tasks such as code generation, responses to
engineering questions via a natural language interface, analysis
and report generation, and bug triage. In this study, we focus on
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Fig. 1: ChipNeMo Training Flow

these three specific LLM applications: an engineering assistant
chatbot for GPU ASIC and Architecture design engineers,
which understands internal HW designs and is capable of
explaining complex design topics; EDA scripts generation for
two domain specific tools based on Python and Tcl for VLSI
timing analysis tasks specified in English; bug summarization
and analysis as part of an internal bug and issue tracking
system.

Although general-purpose LLMs trained on vast amounts
of internet data exhibit remarkable capabilities in generative
AI tasks across diverse domains (as demonstrated by Bubeck
et al. in [9]), recent work such as BloombergGPT [10] and
BioMedLLM [11] demonstrate that domain-specific LLM mod-
els can outperform a general purpose model on domain-specific
tasks. In the hardware design domain, [6] [12] showed that open-
source LLMs (CodeGen [13]) fine-tuned on additional Verilog
data can outperform state-of-art OpenAI models. Customizing
LLMs in this manner also avoids security risks associated with
sending proprietary chip design data to third party LLMs via
APIs. However, it would be prohibitively expensive to train
domain-specific models for every domain from scratch, since
this often requires millions of GPU training hours. To cost-
effectively train domain-specific models, we instead propose
to combine the following techniques: Domain-Adaptive Pre-
Training (DAPT) [14] of foundation models with domain-
adapted tokenizers, model alignment using general and domain-
specific instructions, and retrieval-augmented generation (RAG)
[15] with a trained domain-adapted retrieval model.

As shown in Figure 1, our approach is to start with a base



foundational model and apply DAPT followed by Supervised
Fine-Tuning (SFT). DAPT, also known as continued pretraining
with in-domain data, has been shown to be effective in areas
such as biomedical and computer science publications, news,
and reviews. In our case, we construct our domain-specific
pre-training dataset from a collection of proprietary hardware-
related code (e.g. software, RTL, verification testbenches, etc.)
and natural language datasets (e.g. hardware specifications,
documentation, etc.). We clean up and preprocess the raw
dataset, then continued-pretrain a foundation model with the
domain-specific data. We call the resulting model a ChipNeMo
Foundation Model. DAPT is done on a fraction of the tokens
used in pre-training, and is much cheaper, only requiring a
few thousand GPU hours. As described in Section V, we find
this approach to be more effective than Parameter Efficient
Training (PEFT) techniques such as LoRA [16] for our use
cases.

LLM tokenizers convert text into sequences of tokens
for LLM training. A domain-specific tokenizer improves the
tokenization efficiency by tailoring rules and patterns for
domain-specific terms such as keywords commonly found in
RTL. For DAPT, we cannot retrain a new domain-specific
tokenizer from scratch, since it would make the foundation
model invalid. Instead of restricting ChipNeMo to the pre-
trained general-purpose tokenizer used by the foundation model,
we instead adapt the pre-trained tokenizer to our chip design
dataset, only adding new tokens for domain-specific terms.

ChipNeMo foundation models are completion models which
require supervised-fine-tuning (SFT) to adapt to tasks such
as chat. We use largely publicly available general-purpose
chat instruction datasets for multi-turn chat together with a
small amount of domain-specific instruction datasets to perform
SFT on the ChipNeMo foundation model, which produces
the ChipNeMo Chat model. We observe that SFT with a
general purpose chat instruction dataset is adequate to align the
ChipNeMo foundation models with queries in the chip design
domain. We also added a small amount of task-specific SFT
instruction data, which further improves the alignment. We
trained multiple ChipNeMo Foundation and Chat models based
on variants of LLaMA2 models used as the base foundation
model.

To improve performance on the engineering assistant chatbot
application, we also leverage Retrieval Augmented Generation
(RAG). RAG is an open-book approach for giving LLMs precise
context for user queries. It retrieves relevant in-domain knowl-
edge from its data store to augment the response generation
given a user query. This method shows significant improvement
in grounding the model to the context of a particular question.
Crucially we observed significant improvements in retrieval hit
rate when finetuning a pretrained retrieval model with domain
data. This led to even further improvements in model quality.

We highlight the following contributions and findings related
to adapting LLMs to the chip design domain:

• We demonstrate domain-adapted LLM effectiveness on
three use-cases: an engineering assistant chatbot, EDA
tool script generation, and bug summarization and analysis.

We achieve a score of 7.4 out of 10 point scale for
engineering assistant chatbot responses based on expert
evaluations, achieve more than 50% correctness in EDA
script generation, and expert evaluation rating of 4 to 5
out of 7 point scale for summarizations and assignment
identification tasks.

• Domain-adapted ChipNeMo models dramatically out-
performs all vanilla LLMs evaluated on both multiple-
choice domain-specific AutoEval benchmarks and human
evaluations for applications.

• For tasks where it is possible for the model to generate text
from the prompt context (e.g. chat with RAG hits, summa-
rization, code generation with provided documentation),
domain-adaptation closes the gap between a state-of-the-
art LLaMA2 70B model and a much smaller 13B model (a
small incremental training cost enables up to 5x parameter
reduction for reduced inference cost).

• Customized tokenizers reduce DAPT token count by up
to 3.3% without hurting effectiveness on applications.

• SFT on an additional 1.1K domain-specific instructions
significantly improves applications proficiency by up to
0.33 out of 10-point scale, 18% correctness and 0.79 out
of 7-point scale in engineering assistant chatbot, EDA
scripts generation, and bug summarization and analysis,
respectively.

• Fine-tuning our ChipNeMo retrieval model with domain-
specific data improves the retriever hit rate by 30% over
a pre-trained state-of-the-art retriever, in turn improving
overall quality of RAG responses.

The paper is organized as follows. Section II describes our
dataset and auto evaluation benchmarks for domain knowledge
verification. Section III outlines domain adaptation and training
methods used including the adapted tokenizer, DAPT, SFT, and
RAG. Section IV provides details of each application and the
experimental setup. Section V describes the experimental results
including human evaluations for each application. Section VI
discusses ChipNeMo limitations and future work. Section VII
describes relevant LLM methods and other work targeting
LLMs for chip design. Finally, complete results along with
additional model training details and examples of text generated
by the application use-cases are illustrated in the Appendix.

II. DATASET

A. DAPT Dataset

During Domain-Adaptive Pre-Training (DAPT), we assemble
a dataset from a combination of NVIDIA-proprietary chip
design specific data sources and publicly available datasets.

Chip Design Datasets: Our internal dataset consists of a
diverse range of text sources pertinent to chip design, spanning
design, verification, infrastructure, and internal documentation.
Table I provides a breakdown of the data collected after
filtering, and the corresponding number of tokens using the
LLaMA2 tokenizer. We construct the dataset by gathering
all relevant internal data, then filtering by file type, based



on filename extensions and distinguishing between machine-
generated and human-written content. Although we evaluated
on three specific use cases, we did not specifically limit the
dataset to sources known to be relevant to these use cases since
we believed that incorporating additional domain knowledge
would improve performance. After collection, cleaning, and
filtering, the internal data training corpus has 23.1 billion tokens.
Further details of the data collection process are covered in
Appendix A.

Public Datasets: We augment the chip design specific data
with a sample of publicly available data from various sources,
a common practice in the development of foundational large
language models. Our approach was to reuse public training
data from other language models, with the stipulation that it
must be publicly accessible and compatible with open sourcing.
These datasets exhibit a high degree of correlation with the
pretraining data used in LLaMA2 [5], with the intention of
preserving general knowledge and natural language capabilities
during DAPT. The public datasets used by ChipNeMo can be
categorized into two groups, natural language and code. For the
natural language component, we draw from Wikipedia data [17],
as it is widely regarded for its high data quality. For code, we
leverage GitHub data [18], focusing on programming languages
also present in our internal data chip design dataset such as
C++, Python, and Verilog. To ensure that the overall dataset is
representative of pre-training distributions, we perform a sub-
sampling operation that results in approximately 9.2% of the
total training tokens being sampled from these public datasets,
with a balanced representation of natural language and code.

Data Blend: A significant proportion of the domain data
we gathered is comprised of unannotated code from diverse
origins. In an effort to enhance the model’s comprehension of
domain-specific knowledge, we conducted downsampling of
code data while concurrently upsampling natural language data,
specifically design documentation, over a span of 2 to 4 training
epochs. We also increased the representation of data that we
deemed more pertinent to downstream applications, such as
human-written EDA tool scripts. Furthermore, we incorporated
publicly available domain data for 1 epoch. Details of the token
distribution for training are shown in Table I.

B. SFT Instruction Data

During Supervised Fine-Tuning (SFT), we employ a general
chat SFT instruction dataset that is accessible for commercial
use. The dataset is comprised largely of publicly available in-
struction following datasets including OASST [19], FLAN [20],
P3 [21] and a small amount of a broad domain proprietary
dataset comprising various topics such as brainstorming, open-
ended question answering, rewriting, summarization etc. It’s
important to note that the SFT instruction data we discuss
here is focused on general natural language tasks and does not
contain any information or tasks related to the downstream use
cases in chip design. In total, this dataset comprises 128,000
training samples.

Additionally, we meticulously assembled a domain-specific
instruction dataset for aligning the model to downstream use

cases. These examples have been meticulously crafted by
subject matter experts and are formatted as single-turn questions
and answers. Table II depicts the quantity of our domain-
specific instruction dataset. It’s worth noting that the total
number of training samples in the domain-specific instruction
dataset is quite small when compared to the extensive amount
of generative chat instruction data.

C. AutoEval

In order to quickly and quantitatively assess the accuracy of
various models, we established evaluation criteria structured as
multiple-choice question-and-answer formats for each use case,
designed to closely align with established benchmarks, such
as MMLU [22]. In the process of formulating these multiple-
choice questions, collaboration with domain experts was pivotal.
The goal was to ensure that each question included at least
one complex answer choice, thereby posing a challenge to
individuals with limited domain expertise. Careful attention
was also given to prevent any inadvertent contamination of the
questions with data from our domain-specific SFT. In addition
to the per-use-case benchmarks, an additional benchmark was
created for general circuit design knowledge, covering both
analog and digital design topics. The number of multiple-choice
questions for evaluation benchmark are shown in Table III.

When we report results on the above benchmarks, we take
average results obtained from five distinct runs to mitigate
the effects of variance and noise in the testing process. Each
iteration employs a set of 5-shot examples, with variations
introduced across each individual runs.

In addition to these domain-specific evaluation benchmarks,
we also include commonly-used publicly available LLM
academic benchmarks. Furthermore, we measure the model’s
code generation capabilities, by evaluating HumanEval [23]
for Python and VerilogEval [12] for Verilog.

III. CHIPNEMO DOMAIN ADAPTATION METHODS

ChipNeMo implements multiple domain adaptation tech-
niques to adapt LLMs to the chip design domain. These
techniques include custom tokenizers for chip design data,
domain adaptive pretraining with large corpus of domain data,
supervised-fine-tuning with domain specific tasks, and retrieval-
augmented generation with a fine-tuned retrieval model. We
will illustrate the details of each technique in this section.

A. Tokenizer

When adapting a pre-trained tokenizer, the main goals are
to improve tokenization efficiency on domain-specific data,
maintain efficiency and language model performance on general
datasets, and minimize the effort for retraining/fine-tuning. To
achieve this, we’ve developed a four-step approach:

• Step 1: Training a tokenizer from scratch using domain-
specific data.

• Step 2: From the vocabulary of the new tokenizer,
identifying tokens that are absent in the general-purpose
tokenizer and are rarely found in general-purpose datasets.



Data Source Type Data Data Training Training
Percentage (%) Tokens (B) Percentage (%) Tokens (B)

Bug Summary 9.5% 2.4 10.0% 2.4
Design Source 47.0% 11.9 24.5% 5.9
Documentation 17.8% 4.5 34.0% 8.2
Verification 9.1% 2.3 10.4% 2.5
Other 7.9% 2.0 12.0% 2.9
Wikipedia 5.9% 1.5 6.2% 1.5
Github 2.8% 0.7 3.0% 0.7
Total 100.0% 25.3 100.0% 24.1

TABLE I: Breakdown of Data by Source. Token count measured with original LLaMA2 tokenizer.

Domain Source Number of Samples
Design Knowledge 280
EDA Script Generation 480
Bug summarization and analysis 392
Total 1152

TABLE II: Breakdown of Domain SFT Data.

Domain Source Number of Questions
Design Knowledge (Design) 94
EDA Script Generation (Scripting) 74
Bug Summarization and Analysis (Bugs) 70
Open Domain Circuit Design (Circuits) 227

TABLE III: Domain-specific Evaluation Benchmark.

• Step 3: Expanding the general-purpose tokenizer with the
newly identified tokens at Step 2.

• Step 4: Initializing the embeddings of the new tokens by
utilizing the general-purpose tokenizer.

Specifically for Step 4, when a new token is encountered,
it is tokenized using the pretrained general-purpose tokenizer.
The embedding of the new token is determined by averaging
the embeddings of the tokens generated by the general-purpose
tokenizer [24], and the output layer weights initialized to zero.

Step 2 helps maintain the performance of the pre-trained
LLM on general datasets by selectively introducing new tokens
that are infrequently encountered in general-purpose datasets.
And Step 4 reduces the effort required for retraining/finetuning
the LLM via initialization of the embeddings of new tokens
guided by the general-purpose tokenizer.

B. Domain Adaptive Pretraining

In our study, we apply DAPT on pretrained foundation base
models LLaMA2 7B/13B. Each DAPT model is initialized
using the weights of their corresponding pretrained foundational
base models. We name our DAPT models ChipNeMo. We
employ tokenizer augmentation as depicted in Section III-A
and initialize embedding weight accordingly [24]. We conduct
further pretraining on domain-specific data by employing
the standard autoregressive language modeling objective. All
model training procedures are conducted using the NVIDIA
NeMo framework [25], incorporating techniques such as tensor
parallelism [26] and flash attention [27] for enhanced efficiency.

Our models undergo a consistent training regimen with
similar configurations. A small learning rate of 5 · 10−6 is
employed, and training is facilitated using the Adam optimizer,
without the use of learning rate schedulers. The global batch

size is set at 256, and a context window of 4096 tokens is
applied, resulting in an effective batch size of 1M tokens.
Detailed training hyperparameters are provided in Appendix B.
The toal number of training steps is set to 23,200, equating to
roughly 1 epoch of the data blend.

Fig. 2: Smoothed Training Loss for ChipNeMo with Tokenizer
Augmentation.

Figure 2 illustrates the training loss of ChipNeMo under
the specified hyperparameters. We do observe spikes in the
training loss. In contrast to the hypothesis in [28], we postulate
that in our scenario, these spikes can be attributed to “bad data”
since these irregularities seem to consistently occur in similar
training steps for the same model, even across different model
sizes. We chose not to address this issue, as these anomalies
did not appear to significantly impede subsequent training steps
(with no noticeable degradation in validation loss), possibly
due to our application of a low learning rate.

C. Supervised Fine-Tuning

After DAPT, we perform model alignment with supervised
fine-tuning (SFT). We adopt the identical hyperparameter
training configuration as DAPT for all models, with the
exception of using a reduced global batch size of 128. All SFT
data is structured according to the chat template below:

<extra_id_0>System\n{system}
<extra_id_1>User\n{user_utterance}
<extra_id_1>Assistant\n{chipnemo_response}
...

We employ an autoregressive optimization objective, implement-
ing a strategy where losses associated with tokens originating



from the system and user prompts are masked [5]. This
approach ensures that during backpropagation, our focus is
exclusively directed towards the optimization of answer tokens.

We combine our domain SFT dataset, comprising approx-
imately 1.1k samples, with the more extensive general chat
SFT dataset of 128k samples. We then engaged in fine-tuning
for a single epoch after applying a random shuffle to the
data. We conducted experiments involving augmentation of the
domain-specific SFT dataset for more than one epoch. However,
it became evident that the model rapidly exhibited signs of
overfitting when presented with in-domain questions, often
repeating irrelevant answers from the domain SFT dataset.

Additionally, we conducted an additional SFT using solely
the general chat dataset, excluding any domain-specific SFT
data. For clarity, we designate all our ChipNeMo models as
follows:

1) ChipNeMo-Chat: Models fine-tuned with both domain
and general chat data;

2) ChipNeMo-Chat (noDSFT): Models fine-tuned with
general chat data exclusively.

We also experimented with DAPT directly on a chat aligned
model, such as the LLaMA2-Chat model. We found that
DAPT significantly degraded the model’s alignment, making
the resulting model useless for downstream tasks.

D. Retrieval-Augmented Generation

It is well known that LLMs can generate inaccurate text,
so-called hallucination [29]. Although the phenomenon is not
completely understood, we still must mitigate hallucinations
since they are particularly problematic in an engineering
assistant chatbot context, where accuracy is critical. Our
proposal is to leverage the retrieval augmented generation
(RAG) method. RAG tries to retrieve relevant passages from
a database to be included in the prompt together with the
question, which grounds the LLM to produce more accurate
answers. We find that using a domain adapted language model
for RAG significantly improves answer quality on our domain
specific questions. Also, we find that fine-tuning an off-the-shelf
unsupervised pre-trained dense retrieval model with a modest
amount of domain specific training data significantly improves
retrieval accuracy. Our domain-adapted RAG implementation
diagram is illustrated on Figure 3.

Fig. 3: RAG Implementation Variations

We created our domain adapted retrieval model by fine-tuning
the e5 small unsupervised model [30] with 3000 domain
specific auto-generated samples using the Tevatron framework
[31]. The sample generation and training process are covered
in Appendix C.

Even with the significant gains that come with fine-tuning a
retrieval model, the fact remains that retrieval still struggles with
queries that do not map directly to passages in the document
corpus or require more context not present in the passage.
Unfortunately, these queries are also more representative of
queries that will be asked by engineers in real situations.
Combining retrieval with a domain adapted language model is
one way to address this issue.

IV. LLM APPLICATIONS

We conducted a survey of potential LLM applications within
our design teams and categorized them into four buckets: code
generation, question & answer, analysis and reporting,
and triage. Code generation refers to LLM generating design
code, testbenches, assertions, internal tools scripts, etc.; Q &
A refers to an LLM answering questions about designs, tools,
infrastructures, etc.; Analysis and reporting refers to an LLM
analyzing data and providing reports; triage refers to an LLM
helping debug design or tool problems given logs and reports.
We selected one key application from each category to study
in this work, except for the triage category which we leave
for further research. The motivation and technical details of
each application are given below.

A. Engineering Assistant Chatbot

This application aims to help design engineers with answers
to their architecture, design, verification, and build questions,
which could significantly improve their overall productivity
without impacting the productivity of others. It is observed
that design engineers often enjoy brainstorming, designing
hardware, and writing code, but can be slowed down waiting
for answers on design knowledge they lack. Design productivity
can also be enhanced by avoiding having engineers write code
based on mistaken assumptions or debugging code that they are
unfamiliar with. Internal studies have shown that up to 60% of a
typical chip designer’s time is spent in debug or checklist related
tasks across a range of topics including design specifications,
testbench construction, architecture definition, and tools or
infrastructure. Experts on these issues are often spread around
the globe in a multinational company, such that it is not always
convenient to find immediate help. Therefore, an engineering
assistant chatbot based on knowledge extracted from internal
design documents, code, any recorded data about designs and
technical communications such as emails and corporate instant
communications, etc. could help significantly improve design
productivity. We implemented this application with the domain-
adapted RAG method mentioned in Section III-D.

B. EDA Script Generation

Another common task in an industrial chip design flow is
writing EDA scripts to accomplish a variety of tasks such



Fig. 4: LLM script generator integration with EDA tools

as design implementation, introspection and transformation.
These scripts often leverage both tool-specific and custom
internal script libraries. Learning these libraries, navigating
tool documentation, and writing and debugging these scripts,
can take up a significant amount of engineering time.

LLMs have proven adept at small scale code generation on a
wide array of tasks [32] and therefore customizing these models
to accelerate engineer productivity in this domain specific task
is a natural fit. In this work we focus on generating two different
types of scripts from natural language task descriptions. The
first are scripts which leverage Tool1, an internal python library
for design editing and analysis. The second are Tcl scripts
that use the command interface provided by Tool2, which is a
leading industrial static timing analysis tool.

In order to build our domain-specific fine-tuning dataset
for this task, production scripts for both tools were collected
from design experts. We observed that our DAPT models can
generate reasonable inline comments for the code. This enabled
us to use these models to improve the quality of collected scripts
by generating additional inline comments. Human experts later
verified and corrected these comments and created an associated
prompt. These prompts and code pairs make up the data used
for DSFT in the format discussed in Section III-C.

To provide and collect feedback in the most meaningful way,
we spent significant effort building the flow shown in Fig. 4
where engineers can both query the model and run generated
code through the same interface. This allows us to be confident
in the correctness of generated code as well as provide accurate
feedback by allowing engineers to see how many corrections
they might need to get a functioning script. We support Tool1
and Tool2 integration by establishing interactive connections
to tool servers.

Additionally, we provide a user feedback form, allowing us
to compare different models and glean valuable insights from
user feedback. This valuable information can aid us in further
refining our models.

C. Bug Summarization and Analysis

Tracking the reporting, triage, debug and resolution of
various features and bugs across stages of the production flow
is a time-consuming process. Engineering managers spend
a lot of time reviewing internal issue tracking databases to
build understanding of the state of the project and help speed
their execution. Therefore, a tool that is able to look at all

supporting information and quickly summarize both technical
and managerial data as well as suggest next steps would boost
team productivity. We focus on using LLMs to generate three
different outputs - one focused on technical details, one on
managerial details and one recommending task assignment.

To study these tasks we used NVIDIA’s internal bug database,
NVBugs. This database is used for bug reporting, tracking and
resolution as well as general task and feature tracking across
the company. We expect ChipNeMo models to perform well
on this task as a large amount of bug data was included in
the DAPT dataset. Additionally, we built a domain-specific
SFT dataset for this task that includes examples of the bug
summarizing and task assignment tasks.

Often, bug descriptions contain large snippets of log files
or code dumps along with long comment histories. In such
cases, the bug text is too large for our LLM context windows.
To work around this, we implemented two solutions. First, we
found and replaced long path names with shorter aliases to
allow the model to associate paths that occur in multiple places
in the bug without needing to process the entire string. Second,
we split the summarization task into an incremental task where
the model is tasked with accumulating data across multiple
summary and bug data chunks. We use a hierarchical approach
where the bug is first separated into chunks that fit into the
context window. Those chunks are then summarized and the
summaries are accumulated then separated into chunks. This
process is repeated until the entire set of summaries fits into
a single context window and a single summary is generated.
We use this same approach independent of the LLM used for
summarization.

V. EVALUATIONS

We evaluate our training methodology and application
performance in this section. We study both 7B and 13B models
in the training methodology evaluation, and only 13B models
in the application performance evaluation. For comparison, we
also evaluate two baseline chat models: LLaMA2-13B-Chat*
and LLaMA2-70B-Chat. LLaMA2-13B-Chat* is the foundation
LLaMA2 13B base model fine-tuned with our general purpose
chat instruction dataset, which is different from the original
LLaMA2-13B-Chat model trained with reinforcement learning
from human feedback (RLHF). We chose to do so for fair
comparison of domain adapted models and base models under
the same model alignment approach. LLaMA2-70B-Chat is
the publicly released LLaMA2-Chat model trained with RLHF,
which is considered as the state-of-the-art(SOTA) open-source
chat model.

A. Tokenizer

We adapt the LLaMA2 tokenizer (containing 32K tokens)
to chip design datasets using the previously outlined four-
step process. Approximately 9K new tokens are added to
the LLaMA2 tokenizer. The adapted tokenizers can improve
tokenization efficiency by 1.6% to 3.3% across various chip
design datasets as shown in Figure 5. We observe no obvious



Fig. 5: ChipNeMo Tokenizer Augmentation Improvements.

changes to tokenizer efficiency on public data. Importantly, we
have not observed significant decline in the LLM’s accuracy
on public benchmarks when using the custom augmented
tokenizers even prior to DAPT.

B. Domain Adaptive Pretraining

Figure 6 presents the outcomes for ChipNeMo models on
the AutoEval benchmark for chip design domain and open
domain academic benchmarks. Our research findings can be
summarized as follows:

1) DAPT models exhibit a slight degradation in accuracy on
open-domain academic benchmarks.

2) DAPT exerts a substantial positive impact on tasks within
the domain itself. This effect is manifested in significant
improvements in internal design knowledge as well as
general circuit design knowledge.

3) The use of larger and more performant foundational
models yields better zero-shot results on domain-specific
tasks. Furthermore, the employment of superior base
models results in enhanced domain models post-DAPT,
leading to heightened performance on in-domain tasks.

4) Improvements attributed to DAPT with in-domain tasks
exhibit a positive correlation with model size, with larger
models demonstrating more pronounced enhancements in
domain-specific task performance post-DAPT.

C. Training Ablation Studies

For our ablation studies, we conducted multiple rounds of
domain adaptive pre-training. We provide brief summaries and
refer to the Appendix B for details.

The differences between training with the augmented tok-
enizer and the original tokenizer appeared to be negligible. We
thus primarily attribute the accuracy degradation on academic
benchmarks to domain data. Moreover, the removal of the
public dataset only slightly regressed on most tasks including
academic benchmarks, with the exception of Verilog coding,
where we observed a noticeable difference. This suggests
that the inclusion of GitHub Verilog data contributed to
enhanced Verilog coding capabilities, particularly when the
base foundation models lacked sufficient data in this domain.

In our exploration, we experimented with employing a larger
learning rate, as in CodeLLaMA [32]. We observed large
spikes in training loss at the initial training steps. Although this

approach eventually led to improved training and validation loss,
we noted substantial degradations across all domain-specific
and academic benchmarks, except on coding. We hypothesize
that a smaller learning rate played a dual role, facilitating
the distillation of domain knowledge through DAPT while
maintaining a balance that did not veer too far from the base
model, thus preserving general natural language capabilities.

We also explored the application of Parameter Efficient
Fine-Tuning (PEFT) in the context of Domain-Adaptive Pre-
training (DAPT). In this pursuit, we conducted two experiments
involving the incorporation of LoRA adapters [16], introducing
additional parameters of 26.4 million (small) and 211.2 million
(large) respectively. In both instances, our findings revealed a
significant accuracy gap on in-domain tasks when compared
to the full-parameter DAPT approach. Furthermore, when
contrasting the outcomes between small and large PEFT models,
we observed a marginal enhancement on in-domain task
accuracy, with large models exhibiting a slight improvement.
We posit that this phenomenon may be attributed to the
necessity of training a large amount of parameters in order
to accommodate a substantial volume of information, and the
susceptibility of PEFT models to catastrophic forgetting [33].

D. Training Cost
All models have undergone training using 128 A100 GPUs.

We estimate the costs associated with domain adaptive pre-
training for ChipNeMo as illustrated in Table IV. It is worth
noting that DAPT accounts for less than 1.5% of the overall
cost of pretraining a foundational model from scratch.

Model Size Pretraining DAPT SFT
7B 184,320 2,620 90
13B 368,640 4,940 160
70B 1,720,320 - -

TABLE IV: Training cost of LLaMA2 models in GPU hours.
Pretraining cost from [5].

E. RAG and Engineering Assistant Chatbot
We created a benchmark to evaluate the performance

of design chat assistance, which uses the RAG method.
This benchmark includes 88 questions in three categories:
architecture/design/verification specifications (Specs), testbench
regression documentation (Testbench), and build infrastructure
documentation (Build). For each question, we specify the
golden answer as well as the paragraphs in the design document
that contains the relevant knowledge for the answer. These
questions are created by designers manually based on a
set of design documents as the data store for retrieval. It
includes about 1.8K documents, which were segmented into
67K passages, each about 512 characters.

First, we compare our domain adapted retrieval model with
Sentence Transformer [34] and e5 small unsupervised [30] on
each category. Each model fetches its top 8 passages from the
data store.

As shown in Figure 7, our domain-adapted model performed
2x better than the original e5 small unsupervised model and
30% better than sentence transformer.



(a) Chip Design Domain Benchmarks. (b) Academic Benchmarks.

Fig. 6: AutoEval Benchmark Result for ChipNeMo.

Fig. 7: Retrieval Model Accuracy Comparison

The queries in the Specs category are derived directly from
passages in the documents, so their answers are often nicely
contained in a concise passage and clearly address the query.
On the other hand, the queries of the Testbench and Build
categories are not directly derived from passages, so their
answers were often not as apparent in the fetched passages and
required more context (see Appendix C for detailed examples).
This significantly contributes to the difference in retrieval
quality between the categories.

We conducted evaluation of multiple ChipNeMo models and
LLaMA2 models with and without RAG. The results were then
scored by human evaluators on a 10 point scale and shown in
Figure 8.

We made the following observations:
• RAG significantly boosts human scores. RAG improves the

scores of LLaMA2-13B-Chat*, ChipNeMo-13B-Chat, and
LLaMA2-70B-Chat by 3.82, 2.19, and 5.05, respectively.
Note that, scores are generally higher even with RAG
miss, particularly on LLaMA2 models. We hypothesize
that the additional in-domain context helps to boost the
performance.

• ChipNeMo-13B-Chat outperform similar sized LLaMA2-
13B-Chat* in model only and RAG evaluations by 2.88
and 1.25, respectively.

• ChipNeMo-13B-Chat with RAG achieves the same score

Fig. 8: Human Evaluation of Different Models. Model Only represents
results without RAG. RAG (Hit)/(Miss) only include questions whose
retrieved passages hit/miss their ideal context, RAG (Total) includes
all questions.

(7.4) as the 5X larger model LLaMA2-70B-Chat with
RAG, where LLaMA2-70B-Chat does better in extracting
answers on hits; however, domain adaptation makes up
for it on the misses.

• Domain SFT helps improve the performance of
ChipNeMo-13B-Chat by 0.28 (with RAG) and 0.33
(without RAG).

The complete evaluation results on all models are shown in
Appendix D.

F. EDA Script Generation

In order to evaluate our model on the EDA script generation
task, we created two different types of benchmarks. The first
is a set of “Easy” and “Medium” difficulty tasks (1-4 line
solutions) that can be evaluated without human intervention by
comparing with a golden response. Due to the work required
to build and evaluate these benchmarks we only have this
evaluation set for our Python task. The second set of tasks
(“Hard”) come from real use case scenarios that our engineers
chose. These tasks are much harder requiring 10’s of lines to
solve. Because these are hard to evaluate in an automatic way,
we had human engineers judge the correctness between 0% and
100%. The size of these benchmarks are described in Table V.



Work is ongoing to both increase the size and scope for these
benchmarks to allow us to further improve these models.

We discovered that our models were unable to answer some
of our harder tasks. The tasks required knowledge of many
tool APIs and the model seemed to be unable to decide on the
proper ones while keeping the control flow properly organized.
To mitigate this, we appended a human curated context to
the prompt, specific to each question. This context contained
explanations of different functions or attributes needed to
properly write the desired script. We only provided this for the
“Hard with Context” benchmark category. This also allows us
to study the possible effect of a retrieval based solution, which
we leave to future work.

As can be seen in the ablation results in Figure 9, both DAPT
and domain SFT for our problem was important. Without DAPT,
the model had little to no understanding of the underlying APIs
and performed poorly on automatically evaluated benchmarks.
Domain SFT further improved the results. We believe this is
because our domain SFT data helps guide the model to present
the final script in the most directly applicable fashion.

One interesting result is the LLaMA2-70B pass rate on
“Hard with Context” benchmarks. It performs better than most
models on the Python tool but poorly on the Tcl tool. This
is likely because when provided with the correct context,
LLaMA2-70B’s superior general Python coding ability is able
to solve novel problems it has not been trained on. However, the
LLaMA2-70B model is unable to generalize its coding ability
to the Tcl tool, likely because it has not been exposed to a large
volume of Tcl code. This highlights the benefit of DAPT when
it comes to low-volume or proprietary programming languages.

Fig. 9: EDA Script Generation Evaluation Results

G. Bug Summarization and Analysis
To evaluate our models on bug summarization and analysis

we have a hold out set of 40 bugs which are ideal candidates for

Evaluation Benchmark Name Size
Tool1 (Python) - Automatic (Easy) 150

Tool1 (Python) - Automatic (Medium) 30
Tool1 (Python) - Human (Hard with Context) 10

Tool2 (Tcl) - Human (Hard with Context) 10

TABLE V: EDA Script Generation Evaluation Benchmarks

summarization. This includes having a long comment history
or other data which makes the bugs hard for a human to
quickly summarize. We then ask humans to rate both modes
of summarization as well as the bug assignment the LLM
suggests. The evaluation metric is based on a 7 point Likert
scale. Our results are included in Figure 10.

Fig. 10: Bug Summarization and Analysis Evaluation Results

ChipNeMo-13B-Chat models outperform the base LLaMA2-
13B-Chat* model for all three tasks, improving the 7 point
Likert score by 0.82, 1.09 and 0.61 for technical summary, man-
agerial summary and assignment recommendation, respectively.
Domain SFT also significantly improves the performances over
without domain SFT on managerial summarization and task
assignment.

We hypothesize that contrary to the technical summarization
task whose quality and technical content are more dependent
on the model’s understanding of natural language semantics,
managerial summary requires the model to understand how to
summarize the input data while retaining key personnel/engi-
neer names. This needs a more careful instruction-based fine-
tuning of the LLM.

LLaMA2-70B-Chat model also performs very well on all
three tasks, beating ChipNeMo-13B model over all tasks. Note
that LLaMA2-70B-Chat model also suffers from long-context
challenges with 4096 context size, we believe effective chunk-
and-combine schemes (hierarchical and incremental), choice of
instructional prompts at various stages of summarization, choice
of prompt during task assignment, and raw data formatting/pre-
processing help in circumventing the long-context challenge
and enable LLaMA2-70B-Chat to achieve high scores even
without DAPT and domain SFT.

VI. DISCUSSION

A. Considerations for Domain Adaptation

Although domain-adapted ChipNeMo models achieve signifi-
cant improvements over their corresponding foundation models,
we also observe that the larger LLaMA2 70B can sometimes
achieve similar accuracy as ChipNeMo, as seen in Figures 8,
9, and 10. Recent work has leveraged these powerful models
to perform chip design tasks.

However, it is important to consider the cost-efficiency
benefits gained from the use of a smaller model. Pope et
al. demonstrate that inference costs on an 8B model are 8-
12x lower than on a 62B model for equal latency targets



[35]. Furthermore, model size reduction can lead to dramatic
increases in inference speed by allowing a model to fit within
a single GPU or node where it otherwise could not [36]. Our
ChipNeMo 13B model can be loaded within the memory
of a single A100 GPU without any quantization, unlike the
LLaMA2 70B model. This leads to significant inference speed
increases under normal GPU operation, which can be traded
off for significant inference cost reduction should the GPU be
underclocked.

Thus, when deciding between the use of a larger general-
purpose model versus a smaller specialized model in a produc-
tion environment the following criteria must be considered:

• Training and inference trade-off: Smaller domain
adapted models can match the accuracy of larger gen-
eral purpose models. While domain adaptation incurs
additional up-front costs, the use of smaller models leads
to significantly reduced operating costs.

• Uniqueness of use case: As can be seen from Figures
6, 9, and 10, domain adapted models show the most
improvement on tasks that are rarely present in the public
domain, such as writing code in proprietary languages or
libraries. Indeed, our data shows that even when they are
provided with hand-picked contexts, large general purpose
models have difficulty matching the accuracy of domain
adapted models in such scenarios.

• Availability of domain data: Domain adaption works
best when there is large amount of training data, i.e.
billions of training tokens. This is often the case for large
corporations and projects which have accumulated a large
amount of internal documents and code, but not necessarily
true for smaller businesses or projects.

• End use case diversity: It is possible to fine-tune a
general purpose model for a particular task, but domain-
adapted models are suited for a diverse set of tasks in a
domain. Although we only demonstrate three use cases for
ChipNeMo models in this work, it can be readily re-used
for other use cases with sufficient SFT data.

B. Performance Gap

Although ChipNeMo achieves impressive results in our
selected applications as shown in Appendix E, the evaluation
results for all applications still show a considerate gap with
human expert performance. We are considering the following
approaches to bridge this performance gap:

1) Data Collection: We can expand the DAPT dataset
to include more internal proprietary data. In addition, we
plan to add more task specific instruction sets for SFT as
evidence shown task specific SFT improves the evaluation
results meaningfully.

2) Base Model: We expect better and larger base models
can improve performance, such as LLaMA2 70B. We can also
explore applying DAPT to code-specific base models such as
Code LLaMA [32] for code generation tasks.

3) Training: We also plan to conduct reinforcement learning
from human feedback (RLHF) [37] over the ChipNeMo chat
model to make it more versatile. We plan to leverage pretrained

reward models trained over general purpose datasets. We
also plan to conduct long-context training [38] to overcome
the challenge where long context is needed, e.g. in the bug
summarization application. In general, longer context support
would help improve retrieval based methods for chat assistance
as well as code generation.

4) Retrieval: We will further investigate better RAG meth-
ods for both the engineering assistant chatbot and EDA script
generation. For the engineering assistant chatbot, we can create
different data stores for different application areas. We can also
integrate enterprise search engines with RAG to find relevant
context for a diverse set of problems. For code generation, we
can investigate automated retrieval of context from existing
code and documentation.

C. Agent-Based Design Methodologies

The use cases we experimented in this work are straight-
forward applications of the prompt and response capability of
LLMs. Agents refer to the use of an LLM to choose a sequence
of actions to take, where an LLM is acting as a reasoning
engine to drive outside tools. Chip design processes involve
many existing EDA tools and methodologies. We believe some
of these methodologies can be driven by agents powered by
domain-adapted LLMs such as ChipNeMo models. We plan
to work on agent-based design methodologies for verification
and optimization in the future.

VII. RELATED WORKS

Many domains have a significant amount of proprietary
data which can be used to train a domain-specific LLM. One
approach is to train a domain specific foundation model from
scratch, e.g., BloombergGPT [10] for finance, BioMedLLM
[11] for biomed, and Galactica [39] for science. These
models were usually trained on more than 100B tokens of
raw domain data. The second approach is domain-adaptive
pretraining (DAPT) [14] which continues to train a pretrained
foundation model on additional raw domain data. It shows
slight performance boost on domain-specific tasks in domains
such as biomedical, computer science publications, news, and
reviews. In one example, [40] continued-pretrained a foundation
model on technical content datasets and achieved state-of-the-
art performance on many quantitative reasoning tasks.

Retrieval Augmented Generation (RAG) helps ground the
LLM to generate accurate information and to extract up-to-date
information to improve knowledge-intensive NLP tasks [41].
It is observed that smaller models with RAG can outperform
larger models without RAG [42]. Retrieval methods include
sparse retrieval methods such as TF-IDF or BM25 [43], which
analyze word statistic information and find matching documents
with a high dimensional sparse vector. Dense retrieval methods
such as [44] [45] find matching documents on an embedding
space generated by a retrieval model pretrained on a large
corpus with or without fine-tuning on a retrieval dataset. The
retrieval model can be trained standalone [44] [45] [46] or
jointly with language models [47] [42]. In addition, it has been



shown that off-the-shelf general purpose retrievers can improve
a baseline language model significantly without further fine-
tuning [48]. RAG is also proposed to perform code generation
tasks [49] by retrieving from coding documents.

Foundation models are completion models, which have
limited chat and instruction following capabilities. Therefore,
a model alignment process is applied to the foundation models
to train a corresponding chat model. Instruction fine-tuning
[20] and reinforcement learning from human feedback (RLHF)
[37] are two common model alignment techniques. Instruction
fine-tuning further trains a foundation model using instructions
datasets. RLHF leverages human feedback to label a dataset
to train a reward model and applies reinforcement learning to
further improve models given the trained reward model. RLHF
is usually more complex and resource hungry than instruction
fine-tuning. Therefore, recent studies also propose to reduce
this overhead with simpler methods such as DPO [50] and
SteerLM [51].

Researchers have started to apply LLM to chip design
problems. Early works such as Dave [52] first explored
the possibility of generating Verilog from English with a
language model (GPT-2). Following that work, [6] showed that
fine-tuned open-source LLMs (CodeGen) on Verilog datasets
collected from GitHub and Verilog textbooks outperformed
state-of-the-art OpenAI models such as code-davinci-002 on
17 Verilog questions. [12] proposed a benchmark with more
than 150 problems and demonstrated that the Verilog code
generation capability of pretrained language models could be
improved with supervised fine-tuning by bootstrapping with
LLM generated synthetic problem-code pairs. Chip-Chat [7]
experimented with conversational flows to design and verify
a 8-bit accumulator-based microprocessor with GPT-4 and
GPT-3.5. Their findings showed that although GPT-4 produced
relatively high-quality codes, it still does not perform well
enough at understanding and fixing the errors. ChipEDA [8]
proposed to use LLMs to generate EDA tools scripts. It also
demonstrated that fine-tuned LLaMA2 70B model outperforms
GPT-4 model on this task.

VIII. CONCLUSIONS

We explored domain-adapted approaches to improve LLM
performance for industrial chip design tasks. Our results show
that domain-adaptive pretrained models, such as ChipNeMo-
13B-Chat, achieve similar or better results than their base
models. Closing the gap with much more powerful LLaMA2
70B model on all three use cases: engineering assistant chatbot,
EDA scripts generation, and bug summarization and analysis.
Our future work will focus on further improving ChipNeMo
models and methods to make them ready for production use.
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APPENDIX

A. Data Collection Process

Collection was implemented with a set of shell and Python
scripts, designed to identify relevant design data and docu-
mentation, convert them to plain text if applicable, filter them
using basic quality metrics, compute a checksum for precise file
deduplication, and compress them for storage. The collection
flow did not use off-the-shelf LLM-specific scraping and
collection scripts, as we aimed to minimize space requirements
through in-situ data collection of internal data sources (both
networked file systems and internal web applications). For file
system-based collection, data was kept in-place while being
filtered for quality, instead of storing additional sets of raw
data locally.

The design and verification data collection encompassed
a variety of source files, including Verilog and VHDL (RTL
and netlists), C++, Spice, Tcl, various scripting languages,
and build-related configuration files. Data from internal web
services were gathered through both REST API calls and
conventional crawling, with HTML formatting being removed
using the open-source BeautifulSoup [53] Python library in both
instances to minimize inadvertent removal of coding examples,
at the cost of introducing more boiler plate navigation bars and
other HTML page elements. Our data collection flow supported
conventional documentation formats, including .docx, .pptx,
and .pdf, using readily available Python conversion libraries
and open-source tools.

As most internal data is believe to be of high quality, minimal
filtering was applied: line count filtering was used to ensure
that exceedingly large or small files were excluded, and files
were sorted into broad categories of manually written versus
tool-generated.



B. Domain Adaptive Pretraining (DAPT)

In this section we present detailed results on our domain
adaptive pretrained models. We also detail our ablation experi-
ments on domain adaptive pretraining.

DAPT Hyperparameters: Details presented in Table VI.

Hyperparameters Value
Context Window 4096

Global Batch Size 256 (128)
Optimizer distributed fused adam

Weight Decay 0.01
Betas 0.9, 0.95 (0.9, 0.98)

Learning Rate 5 · 10−6

Scheduler None

TABLE VI: DAPT and SFT hyperparameters, SFT values shown in
parenthesis (if differs from DAPT).

Auto Eval Results: We present detailed results on auto
evaluation benchmarks in Table VII and Table VIII. For sim-
plicity, in the remainders of the section we present aggregated
benchmark results for ablation studies:

• Chip: We report average results on in-domain Design,
Scripting, Bugs, and Circuits benchmarks from Table III
(5-shot).

• MMLU: We report the overall results on MMLU (5-
shot) [22] a popular aggregated benchmark on a wide
variety of subjects.

• Reasoning: We report average results on popular public
benchmarks on common sense reasoning (0-shot), includ-
ing Winogrande [54], hellaswag [55], ARC-easy [56], and
RACE-High [57].

• Code: We report average pass-rate of coding bench-
marks with greedy decoding, including HumanEval [23],
VerilogEval-Machine [12], and VerilogEval-Human [12].

Tokenizer Augmentation: We experimented with DAPT
using the original LLaMA2 tokenizer and the augmented
tokenizer as described in Section III-A. Figure 11 depicts
smoothed training loss for ChipNeMo with the original
unmodified tokenizer. When compared with Figure 2, we
observe that an augmented tokenizer has larger training loss
upon initialization, due to added tokens never being observed
during foundation model pretraining. Similar training loss is
achieved for DAPT with 1 epoch.

Table IX presents aggregated auto evaluation benchmark
results. We note that careful tokenizer augmentation and weight
initialization only slightly impacts model performance on
general academic benchmarks. DAPT significantly improved
domain benchmarks with any tokenizer, including Verilog
coding (no major difference in HumanEval). We conclude that
augmenting the tokenizer comes with the benefit of improved
tokenizer and training efficiency with no degradation on the
models general language and domain capabilities.

Public Datasets Mix-in: As introduced in Section II-A
we included public data in DAPT, sampled from commonly-
used public datasets for foundation model pre-training. We
primarily hoped that mixing in public data such as Wikipedia
in DAPT could help “correct” disturbances brought by tokenizer
augmentation and improve general natural language capabilities

Fig. 11: Smoothed Training Loss with Original LLaMA2 Tokenizer.

Fig. 12: Smoothed Training Loss with Larger Learning Rate. We
include loss curves of suggested hyperparameters for comparison.

of models. We conducted another round of DAPT with tokenizer
augmentation using only the domain data, training for the same
number of steps equating to roughly 1.1 epoch of the data. We
found that public data mix-in slightly improves results. We
present detailed results in Table X.

Learning Rate: We experimented with employing a
larger learning rate, inspired by the approach used in
CodeLLaMA [32]. We use similar training hyperparameters as
in Table XI. We use a cosine schedule with 200 warm-up steps,
and set the final learning rate to be 1/30th of the peak learning
rate of 3 · 10−4. We use the same batch size and number of
training steps as DAPT.

Figure 12 shows the training loss for ChipNeMo-7B with
augmented tokenizers including public dataset mix-in. We
observed large spikes in training loss at the initial training steps
with the final training loss for 7B models to even be better
than 13B original DAPT hyperparameters. However, we note
substantial degradation across natural language benchmarks as
shown in Table XII, including in-domain chip design. Coding
capabilities improved as consistent with the findings of [32].

We highlight that our case differs from that in [32]. Although
we also conduct “continued pretraining” initializing from pre-
trained checkpoints, we preferably want the model to maintain
high degrees of performance on general capabilities, while



Model Design Scripting Bugs Circuits MMLU Winogrande hellaswag ARC-e RACE-H
[22] [54] [55] [56] [57]

LLaMA2-7B 41.1 42.0 42.2 47.9 45.7 68.9 75.6 73.5 46.2
ChipNeMo-7B 57.5 49.3 42.8 49.5 44.6 67.4 76.3 73.7 46.2
LLaMA2-13B 43.6 49.6 39.7 55.5 55.4 72.1 79.3 76.3 46.7
ChipNeMo-13B 67.9 56.3 50.1 56.8 53.4 71.1 80.3 76.7 46.1

TABLE VII: Auto Evaluation Results. We report academic benchmark results for LLaMA2 using proprietary evaluation methods. ChipNeMo
models trained with tokenizer augmentation.

Model HumanEval
[23]

VerilogEval-
Human [12]

VerilogEval-
Machine [12]

LLaMA2-7B 14.0 3.8 24.5
ChipNeMo-7B 12.2 8.3 28.7
LLaMA2-13B 17.1 9.0 30.8
ChipNeMo-13B 17.7 22.4 43.4

TABLE VIII: Coding Evaluation Results. Showing pass-rate with
greedy decoding. We report results for LLaMA2 using proprietary
evaluation methods. ChipNeMo models trained with tokenizer aug-
mentation.

Model Tokenizer DAPT Chip MMLU Reason Code
7B Ori. No 43.4 45.7 66.1 14.1
7B Aug. No 42.7 44.6 65.9 13.9
7B Ori. Yes 51.2 44.8 65.7 17.6
7B Aug. Yes 49.8 44.6 65.8 16.4
13B Ori. No 47.1 55.4 68.6 18.9
13B Aug. No 46.0 55.1 68.6 18.4
13B Ori. Yes 57.7 54.0 68.4 27.2
13B Aug. Yes 57.8 53.4 68.5 27.8

TABLE IX: Evaluation Results on ChipNeMo models with Different
Tokenizers. Aug. indicate augmented tokenizer and Ori. indicate
using LLaMA2 original tokenizer. Using augmented tokenizer without
DAPT corresponds to the model initialization as in Section III-A.

distilling domain dataset information and knowledge (unseen
in model pretraining) into model weights. In contrast, [32]
use publicly available code data that predominantly lacks
natural language elements, emphasizing their primary focus on
coding-related tasks. We hypothesize that a smaller learning
rate played a dual role for domain adaptation, facilitating
the distillation of domain knowledge through DAPT while
maintaining a balance that did not veer too far from the base
model, thus preserving general natural language capabilities
while significantly improving performance on in-domain tasks.

Parameter Efficient Fine-Tuning (PEFT): Parameter
efficient fine-tuning freezes the pre-trained model weights
and injects trainable parameters in smaller adapter models for
efficient fine-tuning of downstream tasks. We explore the use
of PEFT in DAPT using Low-Rank Adaptation (LoRA) [16].
Since our transformer layer implementation fuses KQV into a
single projection, we add LoRA adapters for a single Low-Rank
projection for each self attention layer in combined fashion.
We experiment on LLaMA2-13B models with the original
LLaMA2 tokenizer, using the same DAPT training setups
in Table VI. We ran two experiments, introducing additional
trainable parameters of 26.4 million (small) and 211.2 million
(large) respectively.

Figure 13 shows the training loss curves of LoRA models
and compares with full parameter training. For both LoRA
models, the loss quickly converges and stops decreasing beyond

Public Chip MMLU Reason Code
No 56.9 53.0 67.5 24.1
Yes 57.8 53.4 68.5 27.8

TABLE X: Ablation on Public Dataset Mix-in with ChipNeMo-13B.
Public data mix-in slightly improves results.

Hyperparameters Value
Context Window 4096

Global Batch Size 256
Optimizer distributed fused adam

Weight Decay 0.01
Betas 0.9, 0.95

Learning Rate (lr) 3 · 10−4

Scheduler CosineAnnealing
Warmup Steps 200

min lr 1 · 10−5

TABLE XI: Training Hyperparameters with Larger Learning Rate.
We adopt similar parameter as to [32].

a certain point. Table XIII reports the evaluation results on
LoRA models. Both LoRA models significantly underperforms
full parameter training on in-domain chip design tasks. LoRA
models improve in chip design tasks compared to their non-
DAPT counterparts, with the larger model exhibiting slightly
better (but non significant) results.

Based on the results, we hypothesize that the observed
phenomenon can be attributed to the imperative need for a
sufficiently trainable number of model parameters capable
of accommodating the substantial volume of information
for DAPT. Additionally, it indicates that PEFT models with
limited trainable parameters are susceptible to encountering
the challenge of catastrophic forgetting [33].

C. Retrieval Model Training

Manually generating training samples is very effort intensive,
so we elected to implement a process to generate them
automatically. Since we are using contrastive learning to fine-
tune our model, each sample requires a set of both positive
passages and negative passages, particularly hard negatives to
maximize the accuracy.

1) Dataset Sampling Procedure: Figure 14 describes the
steps taken to generate a sample:

• Step 1: Randomly select a passage from the document
corpus

• Step 2: Use a language model (Vicuna) to generate a valid
query from the passage

• Step 3: Use a pre-existing retrieval model (sentence trans-
former) to fetch the top-N passages from the document
corpus for the query where each passage is a potential
hard-negative



Learning Rate Chip MMLU Reason Code
5 · 10−6 49.8 44.6 65.8 16.4
3 · 10−4 25.5 26.6 49.8 18.1

TABLE XII: Ablation on Learning Rate with ChipNeMo-7B. A larger
learning rate significantly degrades performance on all language related
tasks but slightly improves coding.

Fig. 13: Smoothed Training Loss of LoRA [16]. 13B corresponds to
full parameter DAPT.

• Step 4: It is possible that some of the fetched passages
are actually positive, so use the same language model to
filter out the positive passages

• Step 5: If there are not enough negative passages after
this filtering process, supplement with random passages
from the corpus

For our initial research we used Vicuna [4] and Sentence
Transformer [34]; however, they can easily be replaced with
LLaMA2 [5] and BM25 [43] respectively to produce a retrieval
model that is commercially viable.

2) Hit Quality Comparison: Not all hits are created equal.
The passage in the Spec example below clearly and completely
answers its query. The passage in the Build example contains
the answer; however, more context is required to answer the
query.

Spec Example: Hit passage clearly answers the query.

Query:
What is the XXX buffer in the YYY used for?

Hit Passage:
Since the memory subsystem is partitioned, YYY may receive read
responses whose order is different from their requests. ZZZ requires
strict in-order per-thread processing, thus YYY reorders the read
responses to the request order before sending them back to ZZZ.
YYY re-orders the read responses in a read return reorder buffer
(XXX) to guarantee the ordering.

Answer: re-orders the read responses.

Build Example: Additional information is required to fully
answer the query. Such as: What is a DL? How do we know
Arch-Build-Hotseat-XXX is a DL?

Parameters Chip MMLU Reason Code
None 47.1 55.4 68.6 18.9
26.4M 49.0 55.0 68.2 13.0

211.2M 49.6 54.2 68.6 15.3
13B 57.7 54.0 68.4 27.2

TABLE XIII: Evaluation Results on LoRA Models. First column
indicate number of trainable parameters. None indicates LLaMA2-
13B model without DAPT. 13B indicates full parameter training.

Fig. 14: Sample Generation For Retrieval Model Training

Query:
What is the support DL for XXX build issues?

Hit Passage:
Tree Setup
Working in the XXX Mainline explains initial tree setup and build
steps
Build
Arch-Build-Hotseat-XXX - Hotseat support for XXX build issues
YYY build failures

D. Additional Evaluation Data

Table XIV shows the evaluation data for all models on the
engineering assistant chatbot application.

Table XV shows our evaluation results for all models on the
EDA script generation task.

Table XVI shows our evaluation results for all models on
the bug summarization and analysis task.

Model Domain
SFT

Hit Miss ALL

LLaMA2-13B-Chat* No 2.13 2.80 2.33
ChipNemo-13B-Chat No 4.64 5.40 4.88
ChipNemo-13B-Chat Yes 4.66 6.44 5.21
LLaMA2-13B-Chat* + RAG No 7.68 3.72 6.46
ChipNemo-13B-Chat + RAG No 7.86 5.48 7.12
ChipNemo-13B-Chat + RAG Yes 7.86 6.36 7.40
LLaMA2-70B-Chat No 2.36 2.32 2.35
LLaMA2-70B-Chat + RAG No 8.38 5.20 7.40

TABLE XIV: Engineering Assistant Chatbot Human Evaluation



Tool1 (Python) Tool2 (Tcl)
Model Automatic (Easy) Automatic (Medium) Human (Hard with Context) Human (Hard with Context)
LLaMA2-13B-Chat* 7% 4% 15% 6%
ChipNeMo-13B-Chat (noDSFT) 26% 35% 39% 33%
ChipNeMo-13B-Chat 44% 39% 41% 36%
LLaMA2-70B-Chat 3% 4% 49% 18%

TABLE XV: EDA Script Generation Evaluation.
Scored binary for Automatic Evaluation and 0-100% for Human Evaluation.

Model Technical Summary Managerial Summary Task Assignment
LLaMA2-13B-Chat* 3.79 3.15 3.00
ChipNeMo-13B-Chat (noDSFT) 4.61 3.45 3.43
ChipNeMo-13B-Chat 4.61 4.24 3.61
LLaMA2-70B-Chat 4.92 4.58 3.91

TABLE XVI: Bug Summarization and Analysis Evaluation. Likert scale 1-7.

E. Examples

1) Engineering Assistant Chatbot:
Question:
Write a System Verilog assert to check if signal A is true within 5
cycles of signal B being true

Answer:
Sure, here’s an example System Verilog assert to check if signal A is
true within 5 cycles of signal B being true:
// Define the signals
logic a, b;
// Define the assert
assert property (@(posedge clk) a |-> ##[1:5] b);

In this example, the assert property is used to check if signal a is
true, then signal b must be true within 5 cycles. The assert will fail if
b is not true within 5 cycles of a being true.

Question:
why do we add retiming stages?

Answer:
Retiming stages are added to improve the timing of the design and to
account for the physical distance between different parts of the chip.
By adding retiming stages, we can reduce the amount of time it takes
for signals to travel between different parts of the chip, which can
help to improve the overall performance of the design. Additionally,
retiming stages can also help to reduce the amount of noise and
interference that can occur on the signals, which can further improve
the performance of the design.

Question:
How do I run multiple seeds of random tests using testgen
framework?

Answer:
You can run multiple seeds of random tests using the Testgen
framework by using the rand tgen target. This target allows you
to specify a variety of options for the stopping criteria of random runs
using the same Testgen testlist(s).
nvmk -c . rand_tgen TESTLIST=my_testlist MON=1

TGEN.LOOP=50↪→

This command will run 50 iterations of the my testlist testlist,
each with a different seed. You can specify the number of iterations
and the seed mode using the TGEN.LOOP and SEED options,
respectively.

2) EDA Script Generation: Some function names and
commands are obfuscated.

Question:
write a code in TOOL1 to print the number of flop cells in the give
rectangle (0,0,100,100)

Answer:
# Sure, here is a TOOL1 code to print the number of

flop cells in the given rectangle
(0,0,100,100):

↪→

↪→

# This code gets the top_ref of the design
top_ref = env().get_top_reference()
# This code gets the cells of the rectangle in the

top_ref↪→

cells = env().layout().cells_in_rectangle( top_ref,
rectangle(0, 0, 100, 100), hierarchical)↪→

# This code gets the cells that are flop cells
flop_cells = cells.type("is_flop_cell")
# This code prints the number of flop cells
print(flop_cells.size())

Question:
Write a TOOL2 tcl proc to find intersecting logic from pins ’$pinA’
to pin ’$pinB’.

Answer:
#Sure, here is the code:
proc myfunc {pinA pinB} {

# Get all the pins in the fanout of the given pin
set fanout_pins [fanout -from $pinA]
# Get all the pins in the fanout of the given pin
set fanin_pins [fanin -to $pinB]
# Get the intersection of the two collections
set intersection [common_logic $fanout_pins

$fanin_pins]↪→

# Return the intersection
return $intersection

}



3) Bug Summary and Analysis: Usernames, chip names and paths are obfuscated.

Prompt:
BugId : 002
Synopsis : Request power/current measurement on fabrics using fabric test module
Module : Silicon - DFT
Description :
Hi all,
We want to evaluate silicon current (power) consumed by fabric macros in a chip. This will help us correlate this power to pre-Si power estimates.
Here are the conditions we want to look at for this data:
Fabric test module activity: 0/25/50/75/100%
Corners:
typical low voltage
typical high voltage
We want to isolate fabric current (power) as much as possible, so we want to enable only the logic needed for fabric test modules and the fabrics
themselves.
If this information can be broken down per module (there are 6 in the chip), that will help.
Severity : 5-Performance
Priority : 5-Normal
Comments :
#1 : Author : User A
Is this a requirement only for current or for future chips as well ?
#2 : Author : User B
There will likely be interest in future chips to perform this exercise as we push the boundaries of fabric power density for better area.
#3 : Author : User A
What is needed in this bug ?
@User B It is not clear.
Can you list the specific needs with timelines and priority

Technical Summary:
In NVIDIA’s internal bug management system, a bug has been filed regarding the power and current measurements of the fabrics in the latest chip.
The request is to evaluate the silicon current (power) consumed by the fabric macros in the latest chip and to correlate this power to pre-Si power
estimates. The conditions for the measurements are the fabric test module activity at 0/25/50/75/100% and the corners are typical low voltage and
typical high voltage. The data needs to be broken down per module (there are 6 in the latest chip). Only the logic needed for fabric test modules
and the fabrics themselves need to be enabled.

Managerial Summary:
User A asks User B if the need for evaluating the silicon current of fabric macros in a chip is only for that specific chip or for future ones as
well. User B replies that there will likely be interest in future chips to perform this exercise as they push the boundaries of fabric power density for
better area. User A then asks what is needed in this bug and asks for specific needs with timelines and priority.

Task Assignment:
User B


