Basics GPUs Practice Reviews

Gigabyte’s so-called “Server-Grade Thermal Conductive Gel” and a degrading thermal paste on the Radeon RX 9070 Gaming OC

What is thermal putty and how does it get onto the cooler?

Thermal putty is a pasty, viscoelastic material for thermal coupling between heat-generating electronic components and heat sinks. In terms of function, it is somewhere between classic thermal pastes and solid thermal pads, combining a certain flowability with a stable structure. In contrast to paste, it retains its basic form after application and does not require exact dosing for each application. It can embed into surface depressions with moderate mechanical pressure, filling gaps without completely running or segregating – at least ideally. The thermal performance is based on a fine-particle dispersion of inorganic, electrically non-conductive fillers in an organic carrier matrix. Typically, silicone-based polymers (usually polydimethylsiloxane, PDMS) are doped with oxide particles such as zinc oxide, aluminum oxide or silicon nitride.

Compared to conventional polymer pads, thermal putty allows significantly better adaptation to uneven or variably high components, as it yields specifically under pressure but does not melt like a paste. At the same time, it generally retains greater structural coherence and is more resistant to pump-out effects than low-viscosity thermal pastes. The contact resistance to the contact surface can be improved by targeted compaction, provided the material has not been formulated to be too brittle. This is particularly relevant for power electronics where large component tolerances occur or low contact pressures are available, as is common with GPU VRM zones or uncooled RAM banks.

In industry, thermal putty is preferably applied in large quantities using spraying or dispensing processes. Pneumatic or servo-controlled dosing systems are used here, which apply the material from cartridges or large containers to the component in finely defined quantities via flexible lines. The material is applied in dots or as a continuous bead and requires precise coordination of viscosity, thixotropic behavior and grain distribution. For reproducible processing, the putty must lie within a narrow flow window: it must not run in a static state, but must yield sufficiently under shear in order to be extruded through nozzle systems at a defined pressure. The consistency is typically between 100,000 and 500,000 centipoise, with temperature-dependent thixotropy being a key control criterion.

Microscopy and consistency

In terms of material technology, however, there are considerable conflicts of interest with this form of application. High thermal conductivity requires the highest possible proportion of thermally conductive fillers, which, however, greatly increase the viscosity. In order to still keep the material conveyable, the filler content is reduced or supplemented with larger particles, which worsens the homogeneity. Alternatively, softer, oil-rich carrier media can be used, which improve pumpability but tend to segregate and release oil under thermal load. This results in sedimentation, pore formation or an increased risk of bleeding. In addition, poorly dispersed or coarse-grained fillers can lead to nozzle erosion, micro-clogging or unstable flow behavior, which makes complex process control necessary.

The microscopic images shown here clearly demonstrate the effects of such a formulation optimized for sprayability. The overview at 1000 µm scale shows a blurred material edge with uneven edge adaptation. This indicates a weak matrix structure with low local compaction.

The observed characteristics certainly indicate that during continuous operation, especially when the graphics card is installed in a vertical or orthogonal position, progressive gravimetric and mechanical creep of the putty may occur. The microscopic images with a lateral resolution of around 250 µm show a material image that indicates several potentially critical factors.

Firstly, clearly distributed cavities in the form of pores and channels can be seen, which extend both in depth and horizontally within the matrix. This porosity is most likely due to air bubbles trapped during application, which were either incompletely displaced from the paste during dispensing via a dispenser or even introduced by the abrupt closing of the dispensing nozzle. Too high a viscosity in combination with too fast a feed rate also favors such inclusion formation.

On the other hand, the clear demarcation of the material close to the edge in the direction of unwetted component edges is striking. This indicates a comparatively low surface tension of the carrier matrix, which means that there is insufficient spreading on hydrophobic or less wettable substrates. Together with the recognizably weak adhesion to metallic surfaces, this not only creates the risk of partial delamination, but also promotes material migration under sustained mechanical or thermal stress.

In this specific case, this means that a vertically installed graphics card is subject to permanent shear stress over long periods of time due to the weight of the putties themselves, exacerbated by cyclical thermal expansion. The combination of internal porosity, low adhesion and a lack of cohesive strength can then lead to parts of the material slowly shifting laterally or being displaced from their original position – a process that accelerates further depending on the installation position and operating temperature.

Targeted modification of the rheological properties, for example with additives to stabilize the structural viscosity and adhesion promoters to improve adhesion, would therefore be urgently recommended to counteract this potential long-term problem. Without such measures, the use of the analyzed putty in this form remains a clear risk factor for the thermal stability over the entire service life of the card.

Particle analysis

High magnification under polarization contrast reveals the actual inhomogeneity of the particle distribution. Particles with diameters of less than 3 to more than 20 micrometers occur together, partly embedded in agglomerates or isolated. The dark areas between the particles are evidence of matrix retraction, possibly due to thermal relaxation or viscoelastic stress. The next image after the tear-off edge clearly shows the wave-like surface structure that occurs in materials that only deform unevenly under load. The high light refraction gradient and the spatial topography are a clear sign of plastic creep with simultaneous local matrix failure.

Finally, the last image shows a strongly decoupled grain structure with open pores and partially visible sedimentation edges, which indicate an irreversible material change. Particle binding is weak, the bulk material loses coherence and tends to crumble mechanically.

These characteristics indicate a thermal putty that was primarily designed for industrial processing with an automatic dispenser. The formulation was apparently adjusted to focus on pumping performance, stability and dispensability – at the expense of microstructural integrity and long-term thermal performance. The observed compromise between flowability and grain bonding inevitably leads to suboptimal behavior under thermal cycling. Although the applied layer is initially dimensionally stable and covers the entire surface, it begins to age prematurely, which manifests itself in the reduction of the thermally active surface and the increase in interface resistance.

Alternatives to the dispenser

A technically more sophisticated, albeit more cost-intensive alternative to this solution would be the use of pre-pressed putty material in pad form, as already used by a few competitors. These are prefabricated, pressure-compressed molded bodies that can be cut to size and applied like a normal thermal pad. During production, the material is calendered or laminated into a defined geometry that precisely specifies both the thickness and the grain distribution. The great advantage lies in the consistent thermal performance, the clean application and the ability to simplify complex assembly processes. However, as these pads are significantly more complex to manufacture and have a lower material yield, they are often too expensive for mass-produced products in the consumer class. Here, it is better to opt for the more cost-effective material that can be sprayed – even if it is called “Server Grade Thermal Conductive Gel” to promote it.

Does the putty really run out?

Yes, it can, unfortunately. The next picture clearly shows two different material classes of thermal interface materials in direct comparison. On the left is a mechanically manufactured, pre-pressed semi-putty pad from Ziitek with a stable, grid-structured surface. On the right is the classic dispenser putty in unhardened form, as used by Gigabyte (presumably from the same OEM). The darker, blurred edge area around the dispenser putty, which has formed after just two days at room temperature on a simple sheet of paper, is striking. This behavior is a clear indication of incipient material migration, i.e. the escape of low-molecular components from the polymer matrix.

This effect is referred to in the technical literature as bleeding. It occurs when the carrier matrix is not able to sufficiently bind or stabilize volatile, low-viscosity silicone oils. These oils are usually added to the formulation to improve the processability of the material. They reduce the viscosity, facilitate the dosing and injection process and support the short-term flowability during pressing. In the long term, however, they cause the material to lose its dimensional stability. Migration takes place through diffusion along surfaces or through capillary action in porous substrates – as here with paper. The fact that this effect is already visible after 48 hours in an undisturbed resting state indicates a comparatively weak physical retention of the volatile phases in the matrix. This instability is further exacerbated under thermal load or mechanical stress.

This becomes particularly problematic when graphics cards are mounted vertically or orthogonally. In addition to thermal stress, gravitational forces also act in one direction over longer periods of time in this installation position. If the putty is not sufficiently structurally cross-linked or at least rheologically stabilized, it begins to creep under its own weight. This creep process can cause the material to move out of the contact zone, spread unevenly or build up at the edges. The thermal coupling deteriorates locally and inhomogeneous thermal resistances with potential hotspots arise. This is particularly critical for components with point loads such as VRMs or memory modules, where complete surface coverage is required to ensure thermal integrity.

In contrast, Ziitek’s pre-pressed pad shows no visible migration. This is due to the compaction and shaping carried out during production, which stabilizes the geometry of the material and reduces the free oil content to a minimum. Such materials are usually based on polymer-modified silicone elastomers with low oil separation and higher internal cohesion. The thermomechanical stability is usually significantly better, which makes them particularly suitable for applications with vertical mounting or longer operating times.

Observation of the wet edge around the Gigabyte putty therefore suggests that it is a formulation optimized for injection processability, where long-term thermal stability and structural integrity appear to have been given lower priority. This decision may be understandable from a cost perspective, but inevitably leads to problems in demanding or long-term applications. Creep effects, oil separation and material migration are real risks that can lead to functional impairments depending on the installation orientation and thermal profile of the card. Let’s take a look at this.

But the real problem comes later in the form of the highly problematic heat-conducting paste, because degradation is pre-programmed. A purely accidental find, as always.

 

Kommentar

Lade neue Kommentare

F
Falcon

Veteran

156 Kommentare 165 Likes

Hmm, VaporChamber, 3x8Pin, vernünftig dimensionierter Kühlkörper, ThermalPutty aber leider die falsche WLP.

4/5 möglichen Punkten.

Wirklich schade das die paar Cent für nen PTM Pad nicht da waren.

Testest du die Karte noch allgemein?

Antwort Gefällt mir

Igor Wallossek

1

12,408 Kommentare 24,646 Likes

Nein. Die geht heute noch zurück zum Spender. Die Gründe hatte ich bereits ausführlich erläutert und außerdem möchte der Kollege gern wieder zocken :)

Antwort 4 Likes

c
carrera

Veteran

253 Kommentare 163 Likes

na auf jeden Fall hat der Kollege / Spender jetzt eine amtliche Bestückung seiner Kühllösung (y)

Antwort 4 Likes

Igor Wallossek

1

12,408 Kommentare 24,646 Likes

Ist mein ganzes Putty draufgegangen :D

Antwort 5 Likes

konkretor

Veteran

394 Kommentare 417 Likes

Aua Gigabyte, da muss nochmals nachgelegt werden, sonst säuft die RMA Abteilung ja komplett ab in ein paar Monaten.
Das stärkt mein vertrauen nicht, auch mal ein Gigabyte Server zu bestellen o_Oo_O

Antwort Gefällt mir

ssj3rd

Veteran

320 Kommentare 221 Likes

Also mit einem Wort: Kernschrott.

Antwort 1 Like

P
Pokerclock

Urgestein

807 Kommentare 782 Likes

Ich durfte (leider) zur Corona-Zeit einige Gigabyte-Grafikkarten kaufen. Überwiegend RTX 3080 Vision OC. Dazu Mainboards von Gigabyte, weil man zu der Zeit größere Mengen Grafikkarten nur noch im Bundle mit Zeug bekommen hat, was sonst niemand haben wollte.

Die Dinger hatten alle ab Tag 1 VRAM-Temps >108 Grad. Absoluter Kernschrott, was Gigabyte da an Pads verwendet hat. Kaum hat man angefangen (natürlich erst nach Ende der Gewährleistung) die gegen Putty auszutauschen, hatte man plötzlich konstant <90 Grad.

Die Mainboards krankten im Verlauf der Zeit zunehmend an BIOS-Bugs des Todes.

Ich bin von Gigabyte geheilt und ich kann jedem nur dazu raten die Finger von deren Produkten lassen. Im wahrsten Sinne des Wortes, insbesondere in Bezug auf die Netzteile.

Antwort 5 Likes

Igor Wallossek

1

12,408 Kommentare 24,646 Likes

Ja, diese feurige Erfahrung haben Aris und ich auch gemacht. Das war übrigens der Auslöser für mein Blacklisting, weil ich mich getraut hatte, überhaupt was dazu zu schreiben. Ich hatte damals nicht übel Lust, denen die Rechnung fürs Neubefüllen des CO2-Löschers zu schicken. Aber ich bin großzügig und nicht nachtragend, auch nicht bei übergriffiger PR. :D

Antwort 4 Likes

~
~HazZarD~

Mitglied

58 Kommentare 38 Likes

Somit ein Grund mehr aktuelle Gigabyte Karten zu meiden. Die RX 9000 und RTX 5000 von Gigabyte sollen auch Lüfter-Lagergeräusche erzeugen, wenn die Lüfter in den Fan Stop gehen. Würde mich interessieren ob das nennenswert zulasten der Lüfterlebensdauer geht.

Antwort Gefällt mir

N
Nwolf

Mitglied

26 Kommentare 4 Likes

Hm ok, das heißt dann wohl Karte wieder verkaufen denn zurückschicken ist nicht mehr obwohl Originalverpackt. Oder gibt es ne Adresse wo man die "Thermal Server Grade Pampe" durch was langlebiges tauschen lassen kann?

Update: Die Karte geht wieder zurück und die 6800 XT bleibt erstmal drin, mit dem 5700x3d und 4.0er Riser Kabel sollte statt 5600x und 3.0 auch noch ordentlich Leistung rumkommen für UWQHD Gaming.

Gruß Chris

Antwort Gefällt mir

P
Pokerclock

Urgestein

807 Kommentare 782 Likes

Herausquellendes Putty kann man mit einem Plastikspatel einfach abtragen. Aber die verwendete Paste wird je nach Nutzung irgendwann zwischen 2 Monaten bis 2 Jahren gewechselt werden müssen.

Ich würde es erst einmal nutzen. Gigabyte wird wie gewohnt RMA-Anfragen deswegen einfach abschmettern. Und wenn man bei so Händlern wie Mindfactory gekauft hat, werden die sich auch eher auf einen Gewährleistungskrieg einlassen und ggf. Kundenkonten sperren, bevor die auch nur in Erwägung ziehen das auf eigene Kosten abzuwickeln.

Antwort 1 Like

Ghoster52

Urgestein

1,705 Kommentare 1,368 Likes

Nerviger war da eher der Fan-Start.... 🤪
Ich hatte 3 Gigabyte GPU's aus vergangenen Tagen (GTX670, 970 & 1080), alle litten unter vertrockneter WLP
und 2 MoBo's (BIOS) sind mir verreckt. Ich meide den Hersteller seit längeren und zukünftig, das wird sich auch nicht mehr ändern!

Antwort Gefällt mir

Gurdi

Urgestein

1,546 Kommentare 1,108 Likes

Das ist so gewollt von Gigabyte. Gott weiß warum, aber mehrere Modelle haben diese Eigenart. Offenbar soll das andeuten wann die Lüfter anlaufen bzw. in den FanStop gehen.

@Igor Wallossek Sehr aufschlussreiche Analyse. Ich kann deine Messergebnisse bei mir in der Praxis übrigens eins zu eins bestätigen mit meiner Aorus Elite 9070 XT. Das Delta auf der GPU zum HotSpot war zu Beginn hervorragend mit unter 20 Grad dank der Vapor Chamber. Es hat keine 3 Wochen gedauert und das Delta ist zunehmend angeschwollen. Das ist vor allem dahingehend problematisch, da Gigabyte hier dann ja auch noch Putty verwendet, was eine Erneuerung der WLP auf der GPU zwangsläufig zu einer vollständigen Revision ausufern lässt. Anhand deiner präzisen Messdaten kann ich nun Maßnahmen ergreifen. Ich werd alles einmal vollständig revisionieren mit Flüssigmetall und HT-10000. Die Platine von Gigabyte und die Chamber sind nämlich ansonsten Top. Leider hilft das dem normalen User wenig, zumal die Garantie dann auch mal wieder flöten ist.

Antwort 3 Likes

Annatasta(tur)

Urgestein

502 Kommentare 224 Likes

Hmmm... aber was soll der User denn machen, wenn das ΔTemp über 30K geht? Das ist ja anscheinend kein RMA Grund für die Hersteller.

Antwort Gefällt mir

Victorbush

Urgestein

790 Kommentare 168 Likes

Bleibt die spannende Frage für User wie mich, welches Fabrikat denn längere Zeit was taugt.
Üblicherweise tausche ich ne Graka nach 5-6 Jahren und habe mir über der Verschleiß von WLP noch nie Gedanken gemacht….

Antwort 2 Likes

b
bellnen

Mitglied

22 Kommentare 12 Likes

Bin gespannt ob und wann meine VERTIKAL verbaute 5090 Aorus Master zu tropfen beginnt. Bis jetzt sehe ich absolut nichts (Klopf auf Holz). Wurde gefertigt 6 WE 2025 in China. Teilweise werden sie ja auch in Taiwan gefertigt. Vl gab es hier Unterschiede?

Antwort Gefällt mir

Gurdi

Urgestein

1,546 Kommentare 1,108 Likes

Laut Hersteller schlicht in der Spec.

Antwort Gefällt mir

Igor Wallossek

1

12,408 Kommentare 24,646 Likes

Nach meiner Reparatur hatte die 9070XT ein ΔT von 20 bis 21°C, vorher waren es über 30. So muss das!

Antwort 4 Likes

Annatasta(tur)

Urgestein

502 Kommentare 224 Likes

Nvidia hat einfach die Ausgabe des Hotspot deaktiviert, so nimmt man dem User die Angst. 🤯

Antwort 5 Likes

Danke für die Spende



Du fandest, der Beitrag war interessant und möchtest uns unterstützen? Klasse!

Hier erfährst Du, wie: Hier spenden.

Hier kannst Du per PayPal spenden.

About the author

Igor Wallossek

Editor-in-chief and name-giver of igor'sLAB as the content successor of Tom's Hardware Germany, whose license was returned in June 2019 in order to better meet the qualitative demands of web content and challenges of new media such as YouTube with its own channel.

Computer nerd since 1983, audio freak since 1979 and pretty much open to anything with a plug or battery for over 50 years.

Follow Igor:
YouTube Facebook Instagram Twitter

Werbung

Werbung