News Exklusive Daten zu Intels Alder Lake-S – Wird der Intel Core-1800 Ende des Jahres AMD gefährlich?

Redaktion

Artikel-Butler
Mitarbeiter
Mitglied seit
Aug 6, 2018
Beiträge
1.751
Bewertungspunkte
8.483
Punkte
1
Standort
Redaktion
Intel will und muss mit Alder Lake in der nunmehr 12. Generation wohl noch in diesem Jahr im Mainstream-Markt für Desktop-CPUs ordentliche Duftmarken setzen, will man den Anschluss (auch aus der Sichtweise dieser Zielgruppe) nicht verlieren. Und es nicht nur endlich einmal keine neu angestrichene und weiter aufgebohrte 14-nm-CPU, sondern neben der geringeren Strukturbreite von […]

Hier den ganzen Artikel lesen
 
Guten Morgen, vielen Dank für den interessanten Artikel.
Im Text direkt über dem Bild fehlt ein "j" bei: ...muss man a noch...
Wobei es so einen bayerischen Hauch hat, finde ich auch nett. Liebe Grüße aus dem Süden:)
 
Manno. Können die nicht mal ein paar PCIE-Lanes mehr mitgeben?

Schnellere Lanes sind ja nett, aber mehr Steckkarten als eine GPU sind trotzdem nicht drin.
 
Interessanter sind die Turbo-Boost-Limits der großen Kerne, wo 1-2 Kerne bereits jetzt 4.6 GHz erreichen sollen, bei 3-4 Kernen sind es noch 4.4 GHz, bei 5-6 kernen 4.3 GHz und bei allen 8 Kernen dann noch 4 GHz
Der Multiplikator bei 5-6 Kernen in dem Bild (42x) deutet doch eher auf 4.2 statt 4.3 GHz hin oder?

Ein weiteres großes Upgrade, das mit Alder lake-S kommen wird, ist die Unterstützung für PCI Gen5.
Müsste es in diesem Satz sowie in dem gesamten Abschnitt nicht PCIe statt PCI heißen?

Nun aber genug gemeckert. Ich liebe es hier morgens mit einem :coffee: den neuesten Gerüchten auf den Grund zu gehen. Danke Igor für diesen Einblick :)(y)
 
Cool, Igor the leaker ist wieder am Werk!
Was mich aber noch 1000X mehr interessieren würde: Was zur Hölle ist jetzt bei AMD auf der Roadmap?
Zen 3+ auf 6NM, auf 7NM, gar kein Zen3+ und Zen4 erst ende 2022??
Da scheint sich ja keiner mehr auch nur halbwegs einig zu sein!
Ich denke, Ich bin nicht alleine mit der Frage.. :)
 
...ist aber hier eine Intel News... ;) Bin sicher, Igor bringt eine AMD News, sobald er AMD News hat. :D

EDIT & Nachtrag: wobei 16+8 ja schonmal eine Verbesserung sind. Da bekäme ich ja einen Port meiner Dual-100gbit-Netzwerkkarte mit ca. 60% ausgereizt (die NIC kann leider nur PCIe 3). :D
 
Zuletzt bearbeitet :
Ich finde den Ansatz sehr spannend. Mal sehen was die 10 nm Fertigung so reißen kann. Wenn jetzt alle Jammern wegen der hohen TDP. Das muss im endgültigen Produkt ja nicht so sein. Wir reden hier über eine ES CPU. Da gibt es oft mehr Freiheiten um diverses zu testen.

Ist Big-Little nicht ein geschützter Markenname von Arm?
 
Bin mal wegen den Lastwechselspitzen gespannt. Wird wohl eine sehr stressige Angelegenheit für die Spannungsversorgung des Boards und Netzteil.
 
Das wäre durchaus interessant, wenn man damit Windows und seine tausend Dienste auf die Atom Kerne verbannen könnte, damit mehr Power für die wirklich wichtigen Sachen zur Verfügung steht :D
 
Ich bin eher gespannt, wie "schnell" die neuen Atoms sind. Bisher konnten die mich nicht wirklich überzeugen. Daher vermute ich eher, dass Intel mit seinem 8+8 Kerner gegen AMDs 12 Kerner antreten wird. Ob man den wirklich erreicht/übertrifft, hängt da massiv von den Atom Kernen ab. Und ich frage mich, ob die Atoms tatsächlich effizienter als die Core Kerne sind, oder ob es Intel nicht in erster Linie um die eingesparte Fläche geht.
 
Das wäre durchaus interessant, wenn man damit Windows und seine tausend Dienste auf die Atom Kerne verbannen könnte, damit mehr Power für die wirklich wichtigen Sachen zur Verfügung steht :D
Windows verwaltet die Prozesse normalerwiese so, dass sie nur laufen wenn es die aktuellen Anwendungen nicht stört. Die tausend Windowsprozesse brauchen während ein anderes Programm läuft weniger als 1 % Leistung, so dass man die ruhig vergessen kann. Wenn wirklich mal etwas mehr braucht, dann ist es ein Prozess, der vom laufenden Programm benötigt und angefordert wird. Beispielsweise ist es ein Windowsprozess, der Daten in die Auslagerungsdatei verschiebt, wenn der Platz knapp wird. Daran ist aber nicht Windows schuld sondern die Programme die den Speicher belegen. Eine hohe Hintergrundbelastung auf dem Prozessor ist eher auf installierte Tools und Programme zurück zu führen.
 
Was mir immer noch nicht so richtig einleuchtet ist wofür die Gracemont Kerne überhaupt sein sollen 🤨?

  • Stromsparen?
    • Das kann es im Desktopsegment ja kaum sein (für Notebooks natürlich schon); da braucht man sich nur die Leistungsaufnahme aktueller Intel CPUs im Idle oder unter mittlerer Last, also abseits von AVX, Prime95 und Cinebench R15 anschauen.
  • Multicoreleistung erhöhen?
    • Das dürfte aufgrund des abgespeckten Gracemont-Befehlssatzes ja auch eher nur eingeschränkt zutreffen. Da hätten 16 Cove-Kerne natürlich viel mehr gebracht, wobei dann bei gleichen Taktraten das PL2 vermutlich auf 450 Watt hätte angehoben werden müssen 🤣
  • Gaming
    • Vielleicht handelt es sich hierbei tatsächlich um eine gute "Gaming-Architektur", wo in den Cove-Cores die Gaming-Threads laufen und der restliche Windows-Overhead in den Gracemont-Cores läuft. Aktuell sind 16 Threads für's Gaming ja oft optimal.
    • Dann müsste man allerdings sicherstellen, dass die Threads aber tatsächlich so intelligent verteilt werden, da heute ja meist die physischen Cores alle halbwegs gleichwertig sind und nur die "logischen" Kerne nennenswert schwächer sind...
Also, wie man es dreht und wendet, so richtig gut leuchtet dass hier sicherlich Niemandem ein, oder bin ich einfach zu ahnungslos?
 
...ist aber hier eine Intel News... ;) Bin sicher, Igor bringt eine AMD News, sobald er AMD News hat. :D
;) Konnte nicht wiederstehen in der Hoffnung, das Igor mich erhört. ;) Zumal die Bewertung von Alder Lake ja auch entscheidend davon abhängen wird, ob und was AMD anbietet.
Ich bleibe eh skeptisch, ob Intel dieses Jahr Alder Lake überhaupt mit mehr als einem Q4 semi-paper launch anbietet. Befürchte es eher wie mit den letzten vergangenen launches: Q4 semi-paper launch, ein paar Anfangs verfügbar, und dann breite Verfügbarkeit Q1 22.
Aber ich lasse mich gerne eines besseren belehren. Um AMDs Preise zu drücken, für mein homelab (einen neuen ZFS-storage-server und als Proxmox-box) bin ich selber mehr als interessiert an einem zeitnahen launch. Auf Linux sollte der scheduler auch nicht das Problem sein mit BigLittle.
Und meine neue OpnSense box wartet mit ihrem AM4 board schon sehnsüchtig auf einen günstigen Ryzen 3/5 der bezahlbar ist.
Mal schauen!
 
Manno. Können die nicht mal ein paar PCIE-Lanes mehr mitgeben?
Schnellere Lanes sind ja nett, aber mehr Steckkarten als eine GPU sind trotzdem nicht drin.
Wenn die bisherigen Leaks korrekt sind, sind an der CPU 16x5.0 und 4x4.0, d. h. man kann noch problemlos eine NVMe anschließen (wie bei RKL). Für den Massenmarkt ausreichend und genau darauf zielen diese Produkte ab.
Darüber hinaus, mit PCIe 4.0 am Chipsatz und dem verbreiterten DMI kann man bspw. NVMe's auch problemlos dort anschließen.
[...] Was mich aber noch 1000X mehr interessieren würde: Was zur Hölle ist jetzt bei AMD auf der Roadmap?
Zen 3+ auf 6NM, auf 7NM, gar kein Zen3+ und Zen4 erst ende 2022?? [...]
Aktuell weiß man nichts genaues. Leaks aus 2020 zufolge soll Zen4 jedoch von einer Art Zen3+-APUs begleitet werden, d. h. einen Refrehs oder gar direkt etwas wie einen Zen3+-Core wird es allem Anschein nach durchaus geben (zumal den AMD auch brauchen wird mit Blick auf ADL, sofern Zen4 nicht gleich Anfang 2022 erscheinen wird).
Wann die Zen4-Ryzen's in 2022 kommen, weiß man aktuell nicht. Aktuell sieht es dem allgemeinen Vernehmen nach lediglich danach aus, dass Genoa, also der neue Epyc, erst im 2HJ22 erscheinen wird (d. h. auch Sapphire Rapids SP wird hier einen Vorsprung haben, bis dann AMD reagiert).
Auch bleibt die Frage im Raum stehen, ob AMD mit einem möglichem Refresh in diesem Jahr (zumindest ein teilweises?) Plattformupgrade vornimmt. Käme Zen4 erst sehr spät und keinerlei Update, dann wäre Intel einige Zeit lang mit konkurrenzfägigen CPUs und der deutlich moderneren Plattform unterwegs; man darf gespannt sein.
Weiß man schon was über die Caches?
Denke nicht, würde aber min. vom Willow Cove-Layout ausgehen. Eine weitere Vergrößerung erscheint nicht unbedingt zwingend und ob man am L3 noch mal bzgl. der Größe schrauben wird, ist für Consumer-Produkte auch nicht unbedingt zwingend. Zen2/3 hat seinen großen L3 ja hauptsächlich auch nur wegen der gemeinsamen Fertigung, weil der Cache für den Epyc gebraucht wird. Könnte AMD sich separate Entwicklungs/Fertigungslinien leisten, würde man die Consuumer-CPUs wohl auch auf 16 MiB zusammenstauchen.
Ist Big-Little nicht ein geschützter Markenname von Arm?
Denkbar, aber irrelevant. Intel nennt es "Hybrid Technology", Schreibweise übrigens "big.LITTLE".
Ergänzend: Letzten Gerüchten zufolge soll auch AMD mit Zen5 auf den Zug aufspringen, also irgendwan 2023/24.
Was mir immer noch nicht so richtig einleuchtet ist wofür die Gracemont Kerne überhaupt sein sollen 🤨? [...]
"Stromsparen, Desktop, kann es nicht sein" ... denke mal an die Abermillionen Office/Büro-PCs. Nicht nur das die selten im maximalen Lastzustand unterwegs sind, hier ist es gar genau anders herum. Und wenn ich programmiere, langweilt sich mein System auch den Groißteil der Zeit über, auch wenn da im HG noch ein, zwei VMs laufen habe und diverses andere. Selbst die Kontext/Autovervollständigung der IDE ist da kein Grund für voll ausgelastete große Kerne.
"Multicore, abgespeckter Gracemont-Befehlssatz" ... ist übrigens falsch. In ADL haben die Core- und Atom-Kerne beide den gleichen Support nach bisherigem Kenntnisstand (Unterschiede sind weitestgehend nur für System-Entwickler relevant). Beide Kerntypen unterstützen bis zu AVX2/256bit inkl. dem neuen AVX-VNNI für AI-Workloads bzw. Intels Fortsetzung ihres "DL Boost" ohne AVX-512. Der Punkt ist hierbei, dass die Gracemont-Kerne offensichtlich auch zur Multicore-Leistung beitragen können, d. h. ein ADL 8+8 wird auf jeden Fall gesichert deutlich über einem einfachen 8-Kerner rangieren und eher auf dem Niveau von AMDs 12-Kernern liegen (odrer gar schon leicht darüber).
"Gaming" ... es spricht auch nichts dagegen, dass eine Game-Engine auch zusätzlich Gracemont-Kerne einbindet (abgesehen davon, dass man OS-Prozesse dort parken und die großen Kerne damit freihalten kann). Wie relevant das in nächster Zeit ist, bleibt jedoch abzuwarten, da Game-Engines nicht so massiv parallel ausgelegt sind, weil Parallelität in diesem Kontext schwierig ist. (Zudem bremst hier der Mainstream und selbst die neuesten Konsolen wirken als Bremsklötze mit Blick auf 12- und 16-Kern-CPUs, da hier bestenfalls langsame acht Zen2-Kerne mit 3,6/3,8 GHz geboten werden (und bei der PS5 gar noch im Bereich der FPU beschnitten).)
Erwähnenswert aber in dem Kontext, dass Intel bspw. eine Kooperation mit IO Interactive (Hitman 3) erklärte bzgl. der Entwicklung von besserem Multithreading. Dabei geht es einerseits sicherlich um eine Werbemaßnahme, andererseits aber voraussichtlich auch darum einige Learnings mitzunehmen und in diesem Punkt näher an der Industrie und einer realen Game-Engine zu sein.
Man wird sehen, wie sich das weiterentwickelt.
 
Zuletzt bearbeitet :
Wohl und Wehe des big/little (oder 8+8 oder wie auch immer bezeichneten) Konzepts dürfte m.E. in erster Linie vom OS abhängen. Von mir aus mag das OS Schnittstellen bereitstellen, wonach Anwendungen signalisieren können "ich will gerne auf 1+n großen Kernen laufen", aber nur das OS kennt die Gesamtlast auf dem System und ist am Ende dafür verantwortlich, die Last insgesamt optimal zu verteilen.

Den Hauptvorteil beim Gaming sehe ich tatsächlich nur dort, wo bisher nicht genug Kerne vorhanden waren, um den Game-Engines "genug möglichst von anderen Aufgaben unbehelligten CPU-Bumms" zur Verfügung zu stellen. Das dürfte aber schon bei den heutigen 8-Kernern wohl eher selten der Fall sein. Bei einem 16 Kerner halte ich das aus Gaming-Sicht bereits für ausgeschlossen (natürlich nur, wenn man nicht gerade nebenher ein Video rendert o.ä. - daher "aus Gaming Sicht): Games wollen immer noch primär IPC und TAKT - für irgendwas zwischen 4-8 Kernen bzw. Threads. Ja, Ausnahmen bestätigen die Regel, sind aber immer noch genau das: Ausnahmen bzw. Einzelfälle.

Vielleicht führt ein solches Konzept als Nebeneffekt dazu, dass das mit dem Verteilen der Aufgaben etwas besser funktioniert / einfacher wird als bisher und dadurch ggf. Overhead z.B. beim Scheduler sinkt. Beispiel: Thread XYZ / Anwendung / OS läuft immer auf den kleinen Kernen und wird auch nur dort zwischen Kernen hin-und-her geschoben (bzw. bekommt mehr von denen etc.). Thread 123 läuft dagegen immer entsprechend auf einem großen Kern. Je nachdem kann man evtl. auch noch positive thermische Effekte mitnehmen, weil sich durch die logische Trennung vielleicht auch räumlich bestimmte Teile kühler halten lassen (länger/höher boosten usw.).

Einen Performance-Schub im bisherigen Perforrmance-Bottleneck erwarte ich also durch das neue Design allein eher nicht. Sowas kann nur von unter'm Strich mehr Takt, mehr Kernen, mehr IPC kommen. Aber ich nehme natürlich trotzdem gerne einen geringeren Stromverbrauch bzw. mehr "Schwuppdizität" (Zitat Igor) zum gleichen Preis mit. :D Der Rest hängt vom Einsatzgebiet / spezifischen Bottleneck ab und da ich primär mit dem PC spiele, wäre mir ein 8+8 bei dem vor allem die 8 großen Kerne mit 6GHz takten lieber, als ein echter 16, 24, 48, 64, 128 oderwasweissich Kerner mit max. 4,5, 4,8, 5, oder 5,3 GHz (...natürlich gleiche IPC unterstellt...).

Spannend würde es vielleicht nochmal, wenn die kleinen Kerne irgendwas wirklich schneller (nicht effizienter!) könnten, als heutige bzw. die zukünftigen großen Kerne, so im Stile eines spezialisierten "co-Prozessors". Mir fehlt aber irgendwie die Fantasie, was das sein sollte - gerade bei Intel ist ja auch gerne noch eine iGPU an Board, die im Prinzip eben genau sowas für Video-Gedöns ist. Und für Sound/Kompression & Co. lohnt sich das vermutlich nicht. Bleibt vielleicht noch AI - aber Moment, das ist ja auch regelmäßig in der GPU verortet...

Und nochmal zum Thema Lanes: Eine CPU kann heute eine GPU und eine NVMe direkt befeuern. Toll. Wer das noch für zeitgemäß hält, dem ist m.E. nicht zu helfen. Das ist m.E. inzwischen unterer Mainstream beim Custom-Build (nicht billo-Discounter-FertigPC-Budget). Ja, der Chipsatz bringt auch noch Lanes mit, aber das ist m.E. eine Krücke (ähnlich wie ein USB-Hub), die nicht sein muss und wenn's doof läuft nur einen Bottleneck an anderer Stelle (DMI) offenbart.

Natürlich geht es nicht darum und kann nicht Maßstab sein, eine 100, 200, 400Gbit Netzwerkkarte im HeimPC befeuern zu können. Aber wer mehr will als nur eine GPU und eine schnelle NVME, muss bereits Kompromisse eingehen. Und das ist - meiner bescheidenen Meinung nach - einfach albern.
 
Den Screenshot unten, den ich leicht modifiziert habe, um die Quelle zu schützen, zeigt dazu für das PL1 eine Zeit von 56 Sekunden und für das PL2 von satten 228 Watt eine Peak-Zeit von 2,44 ms

Das stimmt 100 pro eh nicht.
Das sind ja die Angaben von AIDA64, und die stimmen auch jetzt schon bei den 10th und 11th Gen nicht. Kann ja hier jeder mal prüfen der einen hat (ich leider nicht)

@Zer0Strat

Laut Geekbench bei den ES
L1 Instruction Cache32.0 KB x 12
L1 Data Cache48.0 KB x 12
L2 Cache1.25 MB x 3
L3 Cache30.0 MB x 1

Aber muss natürlich nix heißen
 
Zuletzt bearbeitet :
Oben Unten